Some Properties of a Population of

Chordally Partitioned Disks

Nicholas Wheeler

November 2019

Introduction. This story begins with David Borwein's chance observation that if

$$
s\left(x ; a_{0}, a_{2}, \ldots, a_{n}\right) \equiv \prod_{k=0}^{n} \operatorname{sinc}\left(a_{k} x\right) \quad: \quad \text { all } a_{k}>0
$$

then

$$
\begin{aligned}
S_{0} \equiv \int_{-\infty}^{+\infty} s(x ; 1) d x & =\pi \\
S_{1} \equiv \int_{-\infty}^{+\infty} s\left(x ; 1, \frac{1}{3}\right) d x & =\pi \\
S_{2} \equiv \int_{-\infty}^{+\infty} s\left(x ; 1, \frac{1}{3}, \frac{1}{5}\right) d x & =\pi \\
S_{3} \equiv \int_{-\infty}^{+\infty} s\left(x ; 1, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}\right) d x & =\pi \\
S_{4} \equiv \int_{-\infty}^{+\infty} s\left(x ; 1, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \frac{1}{9}\right) d x & =\pi \\
S_{5} \equiv \int_{-\infty}^{+\infty} s\left(x ; 1, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \frac{1}{9}, \frac{1}{11}\right) d x & =\pi \\
S_{6} \equiv \int_{-\infty}^{+\infty} s\left(x ; 1, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \frac{1}{9}, \frac{1}{11}, \frac{1}{13}\right) d x & =\pi
\end{aligned}
$$

but

$$
\begin{aligned}
S_{7} & =\pi \cdot \frac{467807924713440738696537864460}{467807924720320453655260875000} \\
& =\pi \cdot 9999999999852937<S_{6} \\
S_{8} & =\pi \cdot 9999999880796184<S_{7}
\end{aligned}
$$

For this surprising development-initially attributed to computer error-David and Jonathan Borwein (father and son) managed finally to provide an intricate theoretical explanation. ${ }^{1}$ Hanspeter Schmid ${ }^{2}$ traced the "Borwein phenomenon" to the circumstance that the sequence

$$
\begin{aligned}
\sigma_{0}=1 & =1 \\
\sigma_{1}=1-\frac{1}{3} & =\frac{2}{3} \\
\sigma_{2}=1-\frac{1}{3}-\frac{1}{5} & =\frac{7}{15} \\
\sigma_{3}=1-\frac{1}{3}-\frac{1}{5}-\frac{1}{7} & =\frac{34}{105} \\
\sigma_{4}=1-\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9} & =\frac{67}{315} \\
\sigma_{5}=1-\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}-\frac{1}{11} & =\frac{422}{3465} \\
\sigma_{6}=1-\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}-\frac{1}{11}-\frac{1}{13} & =\frac{2021}{45245} \\
\sigma_{7}=1-\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}-\frac{1}{11}-\frac{1}{13}-\frac{1}{15} & =-\frac{982}{45045} \\
\sigma_{8}=1-\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}-\frac{1}{11}-\frac{1}{13}-\frac{1}{15}-\frac{1}{17} & =-\frac{61739}{765765}
\end{aligned}
$$

changes sign at σ_{7}.
I was inspired by the pattern of Schmid's argument to look again to the theory of random walks with diminishing steps, ${ }^{3}$ first to harmonic walks-in which the $k^{t h}$ step has length

$$
a_{k}=\frac{1}{p k+q} \quad: \quad p q \neq 0
$$

(these become "Borwein walks" in the case $p=2, q=-1$) -and then to geometric walks, in which the $k^{t h}$ step has length

$$
a_{k}=\lambda^{k}
$$

Geometric walks acquire special interest from the fact that they are bounded (by $\pm(1-\lambda)^{-1}$) if $\lambda<1$. When one looks to the endpoints achieved by N simulated n-step geometric walks (n large, $N \gg n$ but for practical reasons much less than the total number 2^{n} of such walks) patterns emerge-patterns that change often radically in response to small adjustments of λ, but for some λ-values are quite distinctive. Most frequently encountered in the literature are the "Golden Walks" generated by

$$
\lambda=\frac{1}{\text { Golden Ratio } \varphi}=0.618034
$$

for which the endpoint distribution possesses conspicuous self-similar/fractal

[^0]properties that P. L. Krapivsky \& S. Redner ${ }^{4}$ have discussed in useful detail. $\varphi=\frac{1}{2}(1+\sqrt{5})$ is a real root of the irreducible monic polynomial $x^{2}-x-1=0$ of which the other root $\frac{1}{2}(1-\sqrt{5})$ has modulus <1, so is a "Pissot number." Endpoint distributions with properties analogous to the Golden distribution are generated by
$$
\lambda=\frac{1}{\text { Pissot number }}
$$
where the Pissot numbers obtainable from quadratic monic polynomials proceed $\varphi=1.6180,2.4142,2.6180,2.7421,3.3028,3.4121 \ldots$ The smallest Pissot number (C. L. Segel, 1944) is the $\varphi_{0}=1.3247$ produced by $x^{3}-x-1=0$, and numbers $\varphi_{0}<$ Pissot $<\varphi$ are produced by higher-order polynomials (see the Wikipedia article "Pissot numbers"). But I digress.

I was led to walks with shrinking steps from an initial interest in Borwein integrals. Krapivsky \& Redner, on the other hand, took their interest in such walks from their applications (to physico-chemical problems, molecular spectroscopy in disordered media and such like), and in the course of their argument were led back again to sequences of Borwein-like integrals (though they appear to have been unaware of Borwein's work).

Recent work by S. N. Majundar \& E. Trizac ${ }^{5}$ has, in effect, closed the circle. By clever elaboration of Schmid's argument they manage not only to account for the Borwein phenomenon

$$
S_{n} \equiv \int_{-\infty}^{+\infty} \prod_{k=0}^{n} \operatorname{sinc}\left(\frac{x}{2 k+1}\right) d x=\left\{\begin{array}{lll}
\pi & : & n=0,1,2, \ldots, 6 \tag{1}\\
<S_{n-1} & : & n=7,8,9, \ldots
\end{array}\right.
$$

but to establish (for example) the more vivid result

$$
T_{n} \equiv \int_{-\infty}^{+\infty} \cos x \prod_{k=0}^{n} \operatorname{sinc}\left(\frac{x}{2 k+1}\right) d x=\left\{\begin{array}{lll}
\frac{1}{2} \pi & : & n=0,1,2, \ldots, 55 \tag{2}\\
<T_{n-1} & : & n=56,57,58 \ldots
\end{array}\right.
$$

This is no mean accomplishment: Mathematica v11 running on MacOS 10.14.4 takes oddly staggered amounts of time to evaluate the S_{n} integrals: $\left(S_{4}, \ldots, S_{8}\right)$ took ($0.54,1.35,21.66,22.27,1.92$) seconds, respectively. Ditto the T_{n} integrals: $\left(T_{4}, \ldots, T_{8}\right)$, which took $(0.52,1.02,21.65,22.36,1.93)$ seconds. But T_{55}, T_{56} appear to be quite out of the reach of anything less than a supercomputer,

4 "Random walk with shrinking steps," AJP 72, 591-598 (2004). See in this connection also references cited in Wheeler ${ }^{3}$.
${ }^{5}$ See "When random walkers help solving intriguing integrals," PR Letters 123, 02021 (2019) and "When random walkers help solving intriguing integrals: supplemental material," (unpublished). I became aware of this work when David Griffiths called to my attention the fact that a synopsis "Random walkers illuminate a math problem: a family of tricky integrals can now be solved without explicit calculation" by Heather Hall was the featured article in the September issue of PHYSICS TODAY (pages 18-19).
though Mathematica is in this regard pretty super; it took only 1.92 seconds to produce

$$
S_{8}=\pi \cdot \frac{17708695183056190642497315530628422295569865119}{17708695394150597647449176493763755467520000000}
$$

In their introductory remarks, Majundar \& Trizac-to illustrate that sequences that do not adhere to the pattern suggested by their leading terms are a fairly commonplace mathematical phenomenon-borrow from John Conway and Richard Guy an example discussed on pages 76-79 of their The Book of Numbers (1996). It is that example that comprises my principal subject matter.

> | TOPOLOGICAL INVARIANTS OF PARTITIONED DISKS |
| :---: |

The basic construction. Position n points ("nodes") on a circle in such a way that

- none of the $\binom{n}{2}$ chords are parallel;
- none of their points of intersection ("interior vertices") are coincident.

Call the resulting construction \mathbb{D}_{n}. Erasure of the counding circle produces a complete connected graph, \mathbb{G}_{n}. Figures 1-5 illustrate the cases $n=\{2,3,4,5,6\} .{ }^{6}$

Let $\{v(n), e(n), f(n)\}$ and $\{V(n), E(n), F(n)\}$ denote the number of vertices/edges/faces evident in \mathbb{G}_{n} and \mathbb{D}_{n}, respectively. Those numbers are "topological invariants" in the sense that they are invariant under nodal displacements that preserve the stipulated conditions. Our ultimate objective is to describe $F(n)$. Inspection of the \mathbb{G}-figures $(n=2,3,4,5,6)$ supplies the following data:

n	$v(n)$	$e(n)$	$f(n)$	$v(n)-e(n)+f(n)$
2	2	1	0	1
3	3	3	1	1
4	5	8	4	1
5	10	20	11	1
6	21	45	25	1

The final column demonstrates compliance with the relevant instance of Euler's Formula.

Vertex counting. The n nodal points define a population of $\binom{n}{2}$ non-parallel lines, called "chords" where they fall inside the bounding circle. Those intersect at $\left(\begin{array}{c}\binom{n}{2}\end{array}\right)$ points, which may be coincident at nodes, but are otherwise distict. The nodal points mark the corners of $\binom{n}{4}$ distinct quadrilaterals with non-parallel sides. The sides of any given one of those quadrilaterals intersect at a pair of points that (see Figure 6) fall outside the circle, while the diagonals intersect

[^1]at a solitary interior point. So all together we have
\[

$$
\begin{aligned}
& 2\binom{n}{4} \text { exterior vertices } \\
& \binom{n}{4} \text { interior vertices }
\end{aligned}
$$
\]

At eachof the n nodes $\binom{n-1}{2}$ vertices become coincident, and so far as \mathbb{D}_{n} and \mathbb{G}_{n} are concerned count as a single vertex. ${ }^{7}$ We are brought thus to the conclusion that

$$
\begin{align*}
v(n)=V(n) & =\binom{n}{4}+n \\
& =\binom{n}{4}+\binom{n}{1} \tag{3}
\end{align*}
$$

which conforms to the tabulated v-data. When we attempt to fit a function of the form

$$
\varphi(n ; a, b, c, d, e)=a\binom{n}{0}+b\binom{n}{1}+c\binom{n}{2}+d\binom{n}{3}+e\binom{n}{4}
$$

to the tabulated v-data by setting

$$
\begin{aligned}
& \varphi(2 ; a, b, c, d, e)=2 \\
& \varphi(3 ; a, b, c, d, e)=3 \\
& \varphi(4 ; a, b, c, d, e)=5 \\
& \varphi(5 ; a, b, c, d, e)=10 \\
& \varphi(6 ; a, b, c, d, e)=21
\end{aligned}
$$

Mathematica supplies

$$
v(n)=V(n)=\varphi(n ; 0,1,0,0,1)=\binom{n}{1}+\binom{n}{4}
$$

and so gives back (3).
7 Since, on the other hand, $\binom{n}{2}$ non-parallel lines intersect at $\left(\begin{array}{c}n \\ 2 \\ 2\end{array}\right)$ points, we have the curious identity

$$
\left.\begin{array}{rl}
\binom{n}{2} \\
2
\end{array}\right)=3\binom{n}{4}+n\binom{n-1}{2}, ~\left(\begin{array}{l}
\frac{1}{8}\left(2 n-n^{2}-2 n^{3}+n^{4}\right)
\end{array}\right.
$$

which checks out numerically.

Edge \& face counting. Proceeding similarly from the tabulated e-data we obtain

$$
\begin{equation*}
e(n)=E(n)=\varphi(n ; 0,0,1,0,2)=\binom{n}{2}+2\binom{n}{4} \tag{4}
\end{equation*}
$$

while the tabulated f-data gives

$$
\begin{equation*}
f(n)=\varphi(n ; 1,-1,1,0,1)=\binom{n}{0}-\binom{n}{1}+\binom{n}{2}+\binom{n}{4} \tag{5}
\end{equation*}
$$

We are satisfied that the accuracy of (3) extends beyond the tabulated data to all n, and are encouraged by

$$
\begin{align*}
v(n)-e(n)+f(n)= & \left\{\binom{n}{1}+\binom{n}{4}\right\}-\left\{\binom{n}{2}+2\binom{n}{4}\right\} \\
& +\left\{\binom{n}{0}-\binom{n}{1}+\binom{n}{2}+\binom{n}{4}\right\} \\
= & \binom{n}{0}=1 \tag{6}
\end{align*}
$$

to think that the accuracy of (4) and (5) do too. But the Euler relation (6) is stable under adjustments of the form

$$
\begin{aligned}
& e(n) \longrightarrow e(n)+k(n) \\
& f(n) \longrightarrow f(n)+k(n)
\end{aligned}
$$

To close the argument we would have to establish that no such $k(n)$ can exist. This I will not linger to do.
The point of it all. \mathbb{D}_{n} possesses all the faces of \mathbb{G}_{n} plus an additional $n=\binom{n}{1}$ crescent faces, so

$$
\begin{equation*}
F(n)=\binom{n}{0}+\binom{n}{2}+\binom{n}{4} \tag{7}
\end{equation*}
$$

according to which the numbers $F(n)$ advance in the sequence

$$
1,2,4,8,16, \mathbf{3 1}, 57,99,163,256, \ldots
$$

The leading terms suggest the progression 2^{n-1}, which would give

$$
1,2,4,8,16, \mathbf{3 2}, 64,128,256,512, \ldots
$$

and so fails for $n \geqslant 6$. The Pascal identity $\binom{n}{m}=\binom{n-1}{m-1}+\binom{m-1}{m}$ can be used to bring (7) to the form

$$
F(n)=\binom{n-1}{0}+\binom{n-1}{1}+\binom{n-1}{2}+\binom{n-1}{3}+\binom{n-1}{4}
$$

adopted by Conway \& Guy.
ADDENDUM

Reading further into Conway \& Guy (with random walks/Markov processes still alive in the back of my brain) I was interested to encounter (page 167) passing reference to things called "Markov numbers," which turn out to be any of the integers m encountered in the highly-structured infinite family of triples (x, y, z) that satisfy the Diophantine equation

$$
x^{2}+y^{2}+z^{2}=3 x y z
$$

That equation rang bells, because - as I realized at length-it resembles the equation

$$
x^{3}+y^{3}+z^{3}-3 x y z=1
$$

that defines the "hexenhut," a pseudosphere-like surface the differential geometry of which I was in 2016 stimulated by correspondence with Ahmed Sebar to study in extravagant detail. ${ }^{8}$ But those, obviously, are horses of quite different colors.

[^2]
[^0]: 1 "Some remarkable properties of sinc and related integrals," The Ramanujan Journal 6, 73-89 (2001).

 2 "Two curious integrals and a graphic proof," Elemente der Mathematik 69, 11-17 (2014).

 3 "On some Borwein-inspired properties of random walks with shrinking steps" (2016).

[^1]: ${ }^{6}$ Regular placement of the nodes produces figures that (for $n>3$) may violate the stipulated conditions, so in constructing the figures of order n I assign to the nodes the angular addresses $\theta_{k}=k(2 \pi / n)+\alpha_{k}: k=0,1,2, \ldots, n-1$, where the α_{k} are drawn randomly from the interval $\left[0, \frac{1}{3}(2 \pi / n)\right]$.

[^2]: 8 "Geodesics on the pseudosphere \& hexenhut" (January 2016); "Geodesics on surfaces of revolution: general theory applied to paraboloid \& hexenhut" (February 2016).

