Some Properties of a Population of

Chordally Partitioned Disks

Nicholas Wheeler November 2019

Introduction. This story begins with David Borwein's chance observation that if \$n\$

$$s(x; a_0, a_2, \dots, a_n) \equiv \prod_{k=0}^n \operatorname{sinc}(a_k x) \quad : \quad \text{all } a_k > 0$$

then

$$S_{0} \equiv \int_{-\infty}^{+\infty} s(x;1)dx = \pi$$

$$S_{1} \equiv \int_{-\infty}^{+\infty} s(x;1,\frac{1}{3})dx = \pi$$

$$S_{2} \equiv \int_{-\infty}^{+\infty} s(x;1,\frac{1}{3},\frac{1}{5})dx = \pi$$

$$S_{3} \equiv \int_{-\infty}^{+\infty} s(x;1,\frac{1}{3},\frac{1}{5},\frac{1}{7})dx = \pi$$

$$S_{4} \equiv \int_{-\infty}^{+\infty} s(x;1,\frac{1}{3},\frac{1}{5},\frac{1}{7},\frac{1}{9})dx = \pi$$

$$S_{5} \equiv \int_{-\infty}^{+\infty} s(x;1,\frac{1}{3},\frac{1}{5},\frac{1}{7},\frac{1}{9},\frac{1}{11})dx = \pi$$

$$S_{6} \equiv \int_{-\infty}^{+\infty} s(x;1,\frac{1}{3},\frac{1}{5},\frac{1}{7},\frac{1}{9},\frac{1}{11},\frac{1}{13})dx = \pi$$

but

$$\begin{split} S_7 &= \pi \cdot \frac{467807924713440738696537864460}{467807924720320453655260875000} \\ &= \pi \cdot 9999999999852937 < S_6 \\ S_8 &= \pi \cdot 99999999880796184 < S_7 \end{split}$$

For this surprising development—initially attributed to computer error—David and Jonathan Borwein (father and son) managed finally to provide an intricate theoretical explanation.¹ Hanspeter Schmid² traced the "Borwein phenomenon" to the circumstance that the sequence

$$\sigma_{0} = 1 = 1$$

$$\sigma_{1} = 1 - \frac{1}{3} = \frac{2}{3}$$

$$\sigma_{2} = 1 - \frac{1}{3} - \frac{1}{5} = \frac{7}{15}$$

$$\sigma_{3} = 1 - \frac{1}{3} - \frac{1}{5} - \frac{1}{7} = \frac{34}{105}$$

$$\sigma_{4} = 1 - \frac{1}{3} - \frac{1}{5} - \frac{1}{7} - \frac{1}{9} = \frac{67}{315}$$

$$\sigma_{5} = 1 - \frac{1}{3} - \frac{1}{5} - \frac{1}{7} - \frac{1}{9} - \frac{1}{11} = \frac{422}{3465}$$

$$\sigma_{6} = 1 - \frac{1}{3} - \frac{1}{5} - \frac{1}{7} - \frac{1}{9} - \frac{1}{11} - \frac{1}{13} = \frac{2021}{45045}$$

$$\sigma_{7} = 1 - \frac{1}{3} - \frac{1}{5} - \frac{1}{7} - \frac{1}{9} - \frac{1}{11} - \frac{1}{13} - \frac{1}{15} = -\frac{982}{45045}$$

$$\sigma_{8} = 1 - \frac{1}{3} - \frac{1}{5} - \frac{1}{7} - \frac{1}{9} - \frac{1}{11} - \frac{1}{13} - \frac{1}{15} - \frac{1}{76765}$$

changes sign at σ_7 .

I was inspired by the pattern of Schmid's argument to look again to the theory of random walks with diminishing steps,³ first to *harmonic* walks—in which the k^{th} step has length

$$a_k = \frac{1}{pk+q} \quad : \quad pq \neq 0$$

(these become "Borwein walks" in the case p = 2, q = -1)—and then to geometric walks, in which the k^{th} step has length

$$a_k = \lambda^k$$

Geometric walks acquire special interest from the fact that they are *bounded* (by $\pm (1 - \lambda)^{-1}$) if $\lambda < 1$. When one looks to the endpoints achieved by N simulated *n*-step geometric walks (*n* large, $N \gg n$ but for practical reasons much less than the total number 2^n of such walks) patterns emerge—patterns that change often radically in response to small adjustments of λ , but for some λ -values are quite distinctive. Most frequently encountered in the literature are the "Golden Walks" generated by

$$\lambda = \frac{1}{\text{Golden Ratio }\varphi} = 0.618034$$

for which the endpoint distribution possesses conspicuous self-similar/fractal

 $^{^1}$ "Some remarkable properties of sinc and related integrals," The Ramanujan Journal **6**, 73–89 (2001).

 $^{^2\,}$ "Two curious integrals and a graphic proof," Elemente der Mathematik 69, 11–17 (2014).

 $^{^{3}}$ "On some Borwein-inspired properties of random walks with shrinking steps" (2016).

Introduction

properties that P. L. Krapivsky & S. Redner⁴ have discussed in useful detail. $\varphi = \frac{1}{2}(1+\sqrt{5})$ is a real root of the irreducible monic polynomial $x^2 - x - 1 = 0$ of which the other root $\frac{1}{2}(1-\sqrt{5})$ has modulus < 1, so is a "Pissot number." Endpoint distributions with properties analogous to the Golden distribution are generated by

$$\lambda = \frac{1}{\text{Pissot number}}$$

where the Pissot numbers obtainable from *quadratic* monic polynomials proceed $\varphi = 1.6180, 2.4142, 2.6180, 2.7421, 3.3028, 3.4121...$ The *smallest* Pissot number (C. L. Segel, 1944) is the $\varphi_0 = 1.3247$ produced by $x^3 - x - 1 = 0$, and numbers $\varphi_0 < \text{Pissot} < \varphi$ are produced by higher-order polynomials (see the Wikipedia article "Pissot numbers"). But I digress.

I was led to walks with shrinking steps from an initial interest in Borwein integrals. Krapivsky & Redner, on the other hand, took their interest in such walks from their applications (to physico-chemical problems, molecular spectroscopy in disordered media and such like), and in the course of their argument were led *back again* to sequences of Borwein-like integrals (though they appear to have been unaware of Borwein's work).

Recent work by S. N. Majundar & E. Trizac⁵ has, in effect, closed the circle. By clever elaboration of Schmid's argument they manage not only to account for the Borwein phenomenon

$$S_n \equiv \int_{-\infty}^{+\infty} \prod_{k=0}^n \operatorname{sinc}\left(\frac{x}{2k+1}\right) dx = \begin{cases} \pi & : & n = 0, 1, 2, \dots, 6\\ < S_{n-1} & : & n = 7, 8, 9, \dots \end{cases}$$
(1)

but to establish (for example) the more vivid result

$$T_n \equiv \int_{-\infty}^{+\infty} x \prod_{k=0}^n \operatorname{sinc}\left(\frac{x}{2k+1}\right) dx = \begin{cases} \frac{1}{2}\pi & : & n = 0, 1, 2, \dots, 55\\ < T_{n-1} & : & n = 56, 57, 58 \dots \end{cases}$$
(2)

This is no mean accomplishment: *Mathematica* v11 running on MacOS 10.14.4 takes oddly staggered amounts of time to evaluate the S_n integrals: (S_4, \ldots, S_8) took (0.54, 1.35, 21.66, 22.27, 1.92) seconds, respectively. Ditto the T_n integrals: (T_4, \ldots, T_8) , which took (0.52, 1.02, 21.65, 22.36, 1.93) seconds. But T_{55} , T_{56} appear to be quite out of the reach of anything less than a supercomputer,

⁴ "Random walk with shrinking steps," AJP **72**, 591–598 (2004). See in this connection also references cited in Wheeler³.

⁵ See "When random walkers help solving intriguing integrals," PR Letters **123**, 02021 (2019) and "When random walkers help solving intriguing integrals: supplemental material," (unpublished). I became aware of this work when David Griffiths called to my attention the fact that a synopsis "Random walkers illuminate a math problem: a family of tricky integrals can now be solved without explicit calculation" by Heather Hall was the featured article in the September issue of PHYSICS TODAY (pages 18–19).

though *Mathematica* is in this regard pretty super; it took only 1.92 seconds to produce

 $S_8 = \pi \cdot \frac{17708695183056190642497315530628422295569865119}{17708695394150597647449176493763755467520000000}$

In their introductory remarks, Majundar & Trizac—to illustrate that sequences that do not adhere to the pattern suggested by their leading terms are a fairly commonplace mathematical phenomenon—borrow from John Conway and Richard Guy an example discussed on pages 76–79 of their *The Book of Numbers* (1996). It is that example that comprises my principal subject matter.

TOPOLOGICAL INVARIANTS OF PARTITIONED DISKS

The basic construction. Position n points ("nodes") on a circle in such a way that

• none of the $\binom{n}{2}$ chords are parallel;

• none of their points of intersection ("interior vertices") are coincident. Call the resulting construction \mathbb{D}_n . Erasure of the counding circle produces a complete connected graph, \mathbb{G}_n . Figures 1–5 illustrate the cases $n = \{2, 3, 4, 5, 6\}$.⁶

Let $\{v(n), e(n), f(n)\}$ and $\{V(n), E(n), F(n)\}$ denote the number of vertices/edges/faces evident in \mathbb{G}_n and \mathbb{D}_n , respectively. Those numbers are "topological invariants" in the sense that they are invariant under nodal displacements that preserve the stipulated conditions. Our ultimate objective is to describe F(n). Inspection of the \mathbb{G} -figures (n = 2, 3, 4, 5, 6) supplies the following data:

n	v(n)	e(n)	f(n)	v(n) - e(n) + f(n)
2	2	1	0	1
3	3	3	1	1
4	5	8	4	1
5	10	20	11	1
6	21	45	25	1

The final column demonstrates compliance with the relevant instance of Euler's Formula.

Vertex counting. The *n* nodal points define a population of $\binom{n}{2}$ non-parallel lines, called "chords" where they fall inside the bounding circle. Those intersect at $\binom{\binom{n}{2}}{2}$ points, which may be coincident at nodes, but are otherwise distict. The nodal points mark the corners of $\binom{n}{4}$ distinct quadrilaterals with non-parallel sides. The sides of any given one of those quadrilaterals intersect at a pair of points that (see Figure 6) fall *outside* the circle, while the diagonals intersect

4

⁶ Regular placement of the nodes produces figures that (for n > 3) may violate the stipulated conditions, so in constructing the figures of order n I assign to the nodes the angular addresses $\theta_k = k(2\pi/n) + \alpha_k : k = 0, 1, 2, ..., n - 1$, where the α_k are drawn randomly from the interval $[0, \frac{1}{2}(2\pi/n)]$.

Vertex counting

at a solitary *interior* point. So all together we have

$$2\binom{n}{4}$$
 exterior vertices $\binom{n}{4}$ interior vertices

At each of the *n* nodes $\binom{n-1}{2}$ vertices become coincident, and so far as \mathbb{D}_n and \mathbb{G}_n are concerned count as a single vertex.⁷ We are brought thus to the conclusion that

$$v(n) = V(n) = \binom{n}{4} + n$$
$$= \binom{n}{4} + \binom{n}{1}$$
(3)

which conforms to the tabulated v-data. When we attempt to fit a function of the form

$$\varphi(n;a,b,c,d,e) = a \binom{n}{0} + b \binom{n}{1} + c \binom{n}{2} + d \binom{n}{3} + e \binom{n}{4}$$

to the tabulated v-data by setting

$$\begin{split} \varphi(2; a, b, c, d, e) &= 2\\ \varphi(3; a, b, c, d, e) &= 3\\ \varphi(4; a, b, c, d, e) &= 5\\ \varphi(5; a, b, c, d, e) &= 10\\ \varphi(6; a, b, c, d, e) &= 21 \end{split}$$

Mathematica supplies

$$v(n) = V(n) = \varphi(n; 0, 1, 0, 0, 1) = \binom{n}{1} + \binom{n}{4}$$

⁷ Since, on the other hand, $\binom{n}{2}$ non-parallel lines intersect at $\binom{\binom{n}{2}}{2}$ points, we have the curious identity

$$\binom{\binom{n}{2}}{2} = 3\binom{n}{4} + n\binom{n-1}{2} \\ = \frac{1}{8}(2n - n^2 - 2n^3 + n^4)$$

which checks out numerically.

Partitioned disks

Edge & face counting. Proceeding similarly from the tabulated *e*-data we obtain

$$e(n) = E(n) = \varphi(n; 0, 0, 1, 0, 2) = \binom{n}{2} + 2\binom{n}{4}$$
(4)

while the tabulated f-data gives

$$f(n) = \varphi(n; 1, -1, 1, 0, 1) = \binom{n}{0} - \binom{n}{1} + \binom{n}{2} + \binom{n}{4}$$
(5)

We are satisfied that the accuracy of (3) extends beyond the tabulated data to all n, and are encouraged by

$$v(n) - e(n) + f(n) = \left\{ \binom{n}{1} + \binom{n}{4} \right\} - \left\{ \binom{n}{2} + 2\binom{n}{4} \right\} + \left\{ \binom{n}{0} - \binom{n}{1} + \binom{n}{2} + \binom{n}{4} \right\} = \binom{n}{0} = 1$$
(6)

to think that the accuracy of (4) and (5) do too. But the Euler relation (6) is stable under adjustments of the form

$$e(n) \longrightarrow e(n) + k(n)$$

 $f(n) \longrightarrow f(n) + k(n)$

To close the argument we would have to establish that no such k(n) can exist. This I will not linger to do.

The point of it all. \mathbb{D}_n possesses all the faces of \mathbb{G}_n plus an additional $n = \binom{n}{1}$ crescent faces, so

$$F(n) = \binom{n}{0} + \binom{n}{2} + \binom{n}{4} \tag{7}$$

according to which the numbers F(n) advance in the sequence

 $1, 2, 4, 8, 16, \mathbf{31}, 57, 99, 163, 256, \ldots$

The leading terms suggest the progression 2^{n-1} , which would give

 $1, 2, 4, 8, 16, 32, 64, 128, 256, 512, \ldots$

and so fails for $n \ge 6$. The Pascal identity $\binom{n}{m} = \binom{n-1}{m-1} + \binom{m-1}{m}$ can be used to bring (7) to the form

$$F(n) = \binom{n-1}{0} + \binom{n-1}{1} + \binom{n-1}{2} + \binom{n-1}{3} + \binom{n-1}{4}$$

adopted by Conway & Guy.

ADDENDUM

Reading further into Conway & Guy (with random walks/Markov processes still alive in the back of my brain) I was interested to encounter (page 167) passing reference to things called "Markov numbers," which turn out to be any of the integers m encountered in the highly-structured infinite family of triples (x, y, z) that satisfy the Diophantine equation

$$x^2 + y^2 + z^2 = 3xyz$$

That equation rang bells, because—as I realized at length—it resembles the equation

$$x^3 + y^3 + z^3 - 3xyz = 1$$

that defines the "hexenhut," a pseudosphere-like surface the differential geometry of which I was in 2016 stimulated by correspondence with Ahmed Sebar to study in extravagant detail.⁸ But those, obviously, are horses of quite different colors.

 $^{^8\,}$ "Geodesics on the pseudosphere & hexenhut" (January 2016); "Geodesics on surfaces of revolution: general theory applied to paraboloid & hexenhut" (February 2016).