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Introduction. This story begins with David Borwein’s chance observation that
if

s(x; a0, a2, . . . , an) ≡
n∏

k=0

sinc(akx) : all ak > 0

then

S0 ≡
∫ +∞

−∞
s(x; 1)dx = π

S1 ≡
∫ +∞

−∞
s(x; 1, 1

3 )dx = π

S2 ≡
∫ +∞

−∞
s(x; 1, 1

3 , 1
5 )dx = π

S3 ≡
∫ +∞

−∞
s(x; 1, 1

3 , 1
5 , 1

7 )dx = π

S4 ≡
∫ +∞

−∞
s(x; 1, 1

3 , 1
5 , 1

7 , 1
9 )dx = π

S5 ≡
∫ +∞

−∞
s(x; 1, 1

3 , 1
5 , 1

7 , 1
9 , 1

11 )dx = π

S6 ≡
∫ +∞

−∞
s(x; 1, 1

3 , 1
5 , 1

7 , 1
9 , 1

11 , 1
13 )dx = π

but
S7 = π · 467807924713440738696537864460

467807924720320453655260875000

= π · 9999999999852937 < S6

S8 = π · 9999999880796184 < S7
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For this surprising development—initially attributed to computer error—David
and Jonathan Borwein (father and son) managed finally to provide an intricate
theoretical explanation.1 Hanspeter Schmid2 traced the“Borwein phenomenon”
to the circumstance that the sequence

σ0 = 1 = 1
σ1 = 1 − 1

3 = 2
3

σ2 = 1 − 1
3 − 1

5 = 7
15

σ3 = 1 − 1
3 − 1

5 − 1
7 = 34

105

σ4 = 1 − 1
3 − 1

5 − 1
7 − 1

9 = 67
315

σ5 = 1 − 1
3 − 1

5 − 1
7 − 1

9 − 1
11 = 422

3465

σ6 = 1 − 1
3 − 1

5 − 1
7 − 1

9 − 1
11 − 1

13 = 2021
45045

σ7 = 1 − 1
3 − 1

5 − 1
7 − 1

9 − 1
11 − 1

13 − 1
15 = − 982

45045

σ8 = 1 − 1
3 − 1

5 − 1
7 − 1

9 − 1
11 − 1

13 − 1
15 − 1

17 = − 61739
765765

changes sign at σ7.

I was inspired by the pattern of Schmid’s argument to look again to the
theory of random walks with diminishing steps,3 first to harmonic walks—in
which the kth step has length

ak = 1
pk + q

: pq #= 0

(these become “Borwein walks” in the case p = 2, q = −1)—and then to
geometric walks, in which the kth step has length

ak = λk

Geometric walks acquire special interest from the fact that they are bounded
(by ±(1 − λ)−1) if λ < 1. When one looks to the endpoints achieved by N
simulated n-step geometric walks (n large, N $ n but for practical reasons
much less than the total number 2n of such walks) patterns emerge—patterns
that change often radically in response to small adjustments of λ, but for some
λ-values are quite distinctive. Most frequently encountered in the literature are
the “Golden Walks” generated by

λ = 1
Golden Ratio ϕ

= 0.618034

for which the endpoint distribution possesses conspicuous self-similar/fractal

1 “Some remarkable properties of sinc and related integrals,” The Ramanujan
Journal 6, 73–89 (2001).

2 “Two curious integrals and a graphic proof,” Elemente der Mathematik
69, 11–17 (2014).

3 “On some Borwein-inspired properties of random walks with shrinking
steps” (2016).
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properties that P. L. Krapivsky & S. Redner4 have discussed in useful detail.
ϕ = 1

2 (1+
√

5) is a real root of the irreducible monic polynomial x2 −x− 1 = 0
of which the other root 1

2 (1 −
√

5) has modulus < 1, so is a “Pissot number.”
Endpoint distributions with properties analogous to the Golden distribution are
generated by

λ = 1
Pissot number

where the Pissot numbers obtainable from quadratic monic polynomials proceed
ϕ = 1.6180, 2.4142, 2.6180, 2.7421, 3.3028, 3.4121 . . .The smallest Pissot number
(C. L. Segel, 1944) is the ϕ0 = 1.3247 produced by x3−x−1 = 0, and numbers
ϕ0 < Pissot < ϕ are produced by higher-order polynomials (see the Wikipedia
article “Pissot numbers”). But I digress.

I was led to walks with shrinking steps from an initial interest in Borwein
integrals. Krapivsky & Redner, on the other hand, took their interest in
such walks from their applications (to physico-chemical problems, molecular
spectroscopy in disordered media and such like), and in the course of their
argument were led back again to sequences of Borwein-like integrals (though
they appear to have been unaware of Borwein’s work).

Recent work by S. N. Majundar & E. Trizac5 has, in effect, closed the
circle. By clever elaboration of Schmid’s argument they manage not only to
account for the Borwein phenomenon

Sn ≡
∫ +∞

−∞

n∏

k=0

sinc
(

x
2k+1

)
dx =

{
π : n = 0, 1, 2, . . . , 6
< Sn−1 : n = 7, 8, 9, . . .

(1)

but to establish (for example) the more vivid result

Tn ≡
∫ +∞

−∞
cos x

n∏

k=0

sinc
(

x
2k+1

)
dx =

{
1
2π : n = 0, 1, 2, . . . , 55
< Tn−1 : n = 56, 57, 58 . . .

(2)

This is no mean accomplishment: Mathematica v11 running on MacOS 10.14.4
takes oddly staggered amounts of time to evaluate the Sn integrals: (S4, . . . , S8)
took (0.54, 1.35, 21.66, 22.27, 1.92) seconds, respectively. Ditto the Tn integrals:
(T4, . . . , T8), which took (0.52, 1.02, 21.65, 22.36, 1.93) seconds. But T55, T56

appear to be quite out of the reach of anything less than a supercomputer,

4 “Random walk with shrinking steps,” AJP 72, 591–598 (2004). See in this
connection also references cited in Wheeler3.

5 See “When random walkers help solving intriguing integrals,” PR Letters
123, 02021 (2019) and “When random walkers help solving intriguing integrals:
supplemental material,” (unpublished). I became aware of this work when
David Griffiths called to my attention the fact that a synopsis “Random walkers
illuminate a math problem: a family of tricky integrals can now be solved
without explicit calculation” by Heather Hall was the featured article in the
September issue of PHYSICS TODAY (pages 18–19).
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though Mathematica is in this regard pretty super; it took only 1.92 seconds to
produce

S8 = π · 17708695183056190642497315530628422295569865119
17708695394150597647449176493763755467520000000

In their introductory remarks, Majundar & Trizac—to illustrate that
sequences that do not adhere to the pattern suggested by their leading terms are
a fairly commonplace mathematical phenomenon—borrow from John Conway
and Richard Guy an example discussed on pages 76–79 of their The Book of
Numbers (1996). It is that example that comprises my principal subject matter.

topological invariants of partitioned disks

The basic construction. Position n points (“nodes”) on a circle in such a way
that
• none of the

(n
2

)
chords are parallel;

• none of their points of intersection (“interior vertices”) are coincident.
Call the resulting construction Dn. Erasure of the counding circle produces a
complete connected graph,Gn.Figures 1–5 illustrate the cases n = {2, 3, 4, 5, 6}.6

Let {v(n), e(n), f(n)} and {V (n), E(n), F (n)} denote the number of
vertices/edges/faces evident in Gn and Dn, respectively. Those numbers are
“topological invariants” in the sense that they are invariant under nodal
displacements that preserve the stipulated conditions. Our ultimate objective
is to describe F (n). Inspection of the G-figures (n = 2, 3, 4, 5, 6) supplies the
following data:

n v(n) e(n) f(n) v(n) − e(n) + f(n)
2 2 1 0 1
3 3 3 1 1
4 5 8 4 1
5 10 20 11 1
6 21 45 25 1

The final column demonstrates compliance with the relevant instance of Euler’s
Formula.

Vertex counting. The n nodal points define a population of
(n
2

)
non-parallel lines,

called “chords” where they fall inside the bounding circle. Those intersect at((n
2)
2

)
points, which may be coincident at nodes, but are otherwise distict. The

nodal points mark the corners of
(n
4

)
distinct quadrilaterals with non-parallel

sides. The sides of any given one of those quadrilaterals intersect at a pair of
points that (see Figure 6) fall outside the circle, while the diagonals intersect

6 Regular placement of the nodes produces figures that (for n > 3) may
violate the stipulated conditions, so in constructing the figures of order n I assign
to the nodes the angular addresses θk = k(2π/n) + αk : k = 0, 1, 2, . . . , n − 1,
where the αk are drawn randomly from the interval [0, 1

3 (2π/n)].
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at a solitary interior point. So all together we have

2
(

n

4

)
exterior vertices

(
n

4

)
interior vertices

At eachof the n nodes
(n−1

2

)
vertices become coincident, and so far as Dn and Gn

are concerned count as a single vertex.7 We are brought thus to the conclusion
that

v(n) = V (n) =
(

n

4

)
+ n

=
(

n

4

)
+

(
n

1

)
(3)

which conforms to the tabulated v-data. When we attempt to fit a function of
the form

ϕ(n; a, b, c, d, e) = a

(
n

0

)
+ b

(
n

1

)
+ c

(
n

2

)
+ d

(
n

3

)
+ e

(
n

4

)

to the tabulated v-data by setting

ϕ(2; a, b, c, d, e) = 2
ϕ(3; a, b, c, d, e) = 3
ϕ(4; a, b, c, d, e) = 5
ϕ(5; a, b, c, d, e) = 10
ϕ(6; a, b, c, d, e) = 21

Mathematica supplies

v(n) = V (n) = ϕ(n; 0, 1, 0, 0, 1) =
(

n

1

)
+

(
n

4

)

and so gives back (3).

7 Since, on the other hand,
(n
2

)
non-parallel lines intersect at

((n
2)
2

)
points,

we have the curious identity

((n
2

)

2

)
= 3

(
n

4

)
+ n

(
n − 1

2

)

= 1
8 (2n − n2 − 2n3 + n4)

which checks out numerically.
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Edge & face counting. Proceeding similarly from the tabulated e-data we obtain

e(n) = E(n) = ϕ(n; 0, 0, 1, 0, 2) =
(

n

2

)
+ 2

(
n

4

)
(4)

while the tabulated f -data gives

f(n) = ϕ(n; 1,−1, 1, 0, 1) =
(

n

0

)
−

(
n

1

)
+

(
n

2

)
+

(
n

4

)
(5)

We are satisfied that the accuracy of (3) extends beyond the tabulated data to
all n, and are encouraged by

v(n) − e(n) + f(n) =
{(

n

1

)
+

(
n

4

)}
−

{(
n

2

)
+ 2

(
n

4

)}

+
{(

n

0

)
−

(
n

1

)
+

(
n

2

)
+

(
n

4

)}

=
(

n

0

)
= 1 (6)

to think that the accuracy of (4) and (5) do too. But the Euler relation (6) is
stable under adjustments of the form

e(n) −→ e(n) + k(n)
f(n) −→ f(n) + k(n)

To close the argument we would have to establish that no such k(n) can exist.
This I will not linger to do.

The point of it all. Dn possesses all the faces of Gn plus an additional n =
(n
1

)

crescent faces, so

F (n) =
(

n

0

)
+

(
n

2

)
+

(
n

4

)
(7)

according to which the numbers F (n) advance in the sequence

1, 2, 4, 8, 16,31, 57, 99, 163, 256, . . .

The leading terms suggest the progression 2n−1, which would give

1, 2, 4, 8, 16,32, 64, 128, 256, 512, . . .

and so fails for n ! 6. The Pascal identity
(n
m

)
=

(n−1
m−1

)
+

(m−1
m

)
can be used

to bring (7) to the form

F (n) =
(

n − 1
0

)
+

(
n − 1

1

)
+

(
n − 1

2

)
+

(
n − 1

3

)
+

(
n − 1

4

)

adopted by Conway & Guy.
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addendum

Reading further into Conway & Guy (with random walks/Markov processes
still alive in the back of my brain) I was interested to encounter (page 167)
passing reference to things called “Markov numbers,” which turn out to be any
of the integers m encountered in the highly-structured infinite family of triples
(x, y, z) that satisfy the Diophantine equation

x2 + y2 + z2 = 3xyz

That equation rang bells, because—as I realized at length—it resembles the
equation

x3 + y3 + z3 − 3xyz = 1

that defines the “hexenhut,” a pseudosphere-like surface the differential
geometry of which I was in 2016 stimulated by correspondence with Ahmed
Sebar to study in extravagant detail.8 But those, obviously, are horses of quite
different colors.

8 “Geodesics on the pseudosphere & hexenhut” (January 2016); “Geodesics
on surfaces of revolution: general theory applied to paraboloid & hexenhut”
(February 2016).


